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Abstract-The behavior of a tip-loaded anisotropic cantilever beam with an arbitrary cross-section
is studied using Saint-Venant's semi-inverse method along with a power series solution for the
local in-plane and out-of-plane deformation warping functions. The power series coefficients are
determined by solving a set of variationally derived linear algebraic equations. Using the resulting
three-dimensional displacement solutions, the shear deformation associated with applied tip loads
is investigated as well as the shear center location. Two different definitions of the shear center are
presented for anisotropic beams by extending existing approaches developed for isotropic sections.
Both of the extended definitions reveal the linear dependency of the shear center location on beam
length. Numerical results are presented for three different cross-sections (ellipse, triangle, NACA
0012 airfoil) and two different materials (AI 6061-T6, off-angle high strength graphite/epoxy fibers).

INTRODUCTION

Closed-form solutions for Saint-Venant's problems (tip-loaded cantilever beam) exist for
only a few simple isotropic homogeneous cross-section shapes (ellipse, rectangle, equilateral
triangle) (Sokolnikoff, 1946) and one anisotropic homogeneous cross-section (ellipse) (Lekh
nitskii, 1963). For general cross-section shapes, the local deformation functions of the cross
section cannot be determined exctly and thus approximate techniques must be used. One
proven approach for approximately determining these local deformation in isotropic cross
sections (Herrmann, 1965; Mason and Herrmann, 1968) and anisotropic cross-sections
(Kosmatka and Dong, 1991) involves the application of the finite element method. In
this approach, the general anisotropic cross-section is discretized into triangular and/or
quadrilateral subregions (elements) with in-plane and out-of-plane nodal variables that
represent the local in-plane deformations and out-of-plane warping. But the finite element
method requires a large number of elements for complex cross-sections, which will lead to
a large set oflinear algebraic equations (thousands of unknowns). Moreover, the calculated
array of nodal deformations provides little insight into the deformation and warping
distribution over the cross-section and thus one must resort to graphical finite element post
processing techniques to understand this distribution. An alternative approach, which has
been used by Mindlin (1975) for the solution of Saint-Venant's isotropic torsion problem
and by Kosmatka (1992) for the isotropic flexure problem, involves assuming a double
power series for each of the local in-plane deformations and the out-of-plane warping. The
power series coefficients are determined by solving a set of linear algebraic equations, where
the number ofequations is equal to the number of unknown coefficients. Thus, the problem
size is independent of the cross-section complexity, and only dependent on the number of
terms in the power series.

The objective of this paper is to develop a method for studying the behavior of tip
loaded anisotropic beams with general cross-sections using Saint-Venant's semi-inverse
method, where the local deformations of the cross-section are expressed as a double power
series in terms of the cross-section coordinates. The coefficients associated with the power
series terms are determined by solving a set of variationally derived linear algebraic equa
tions, where the number of equations is equal to the number of unknown coefficients. For
complex cross-sections, the calculated coefficients represent a "best-fit approximation" to
the exact warping function which may be an infinite series of transcendental functions. To
aid in the evaluation of the power series weighted area integrals, the cross-section is
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discretized into a series of triangular subregions, where the integration in each subregion is
evaluated exactly using Gaussian Quadrature formulae for triangles (Dunavant, 1985). The
triangle aspect ratio is not critical, as opposed to the finite element method, since the power
series is a global cross-section function and not a local element function.

Numerical results are presented for three different cross-sections (ellipse, triangle,
NACA-0012) and two different ~aterials (AI 606l-T6, off-angle high-strength graphite/
epoxy fibers) to first validate the approach, second prove convergence of warping re
lated cross-section parameters (torison constant, shear center location, shear deforma
tion), third present important behavioral data not currently found in the literature and
fourth investigate the sensitivity of the shear center location with cross-section shape, beam
length and material definition. The solution procedure and results from the current study
will be ofinterest to developers ofone-dimensional theories for general anisotropic prismatic
beams, who can use the current general Saint-Venant displacement, stress, and local defor
mation solutions to: (l) provide a frame-work for insuring that the requisite "extension
bend-twist-shear" coupling effects are properly included, (2) determine all of the required
one-dimensional local deformation (warping) dependent cross-section constants (for
example torsion stiffness, shear stiffness, coupling stiffnesses, etc.), (3) define the limits of
applicability of their proposed theories. Moreover, the numerical results on shear defor
mation and the line of shear centers provides important physical insight into the complex
behavior of generally anisotropic prismatic beams and the profound tailorability that is
possible using advanced composite materials in wing and blade designs.

THEORETICAL BACKGROUND

We begin by considering a cantilevered prismatic beam of length L with an arbitrary
cross-section of area A composed of a homogeneous, rectilinearly anisotropic material. A
rectangular Cartesian coordinate system x,y, z, with corresponding displacements u, v, w,
is established with the origin at the centroid of the root end and the x,y axes coincide with
the cross-section principal axes (see Fig. I). The constitutive relations for the material are
given by:

{IT} = [CHe},

{e} = [SHIT},

[C]=[S]-I,

y,V

Fig. I. Anisotropic cantilever beam.

(la-e)
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where [C] and [S] are fully populated symmetric matrices with 21 distinct elements and the
stress and strain arrays are given as:

{a} = {aXX,ayy,azz,'tyz,'t"xz,'t"XY}'

{B} = {Bxx ,Byy , Bzz, Yyz, Yxz, YXY}' (1d, e)

At the root end, the beam is fully fixed. Within the framework of the Saint-Venant problems,
this condition cannot be described on a point-wise basis and the equivalent statement at
the centroid (x = y = z = 0) can be used:

U = D = W ~ 0,

OU = OD = OD _ OU = 0
oz oz ox oy .

(2a-f)

This root fixity condition is not unique and other possible root fixity conditions can also
be easily considered. For example, Mason and Herrmann (1968) studied the flexure behavior
of an isotropic beam by setting to zero the average root displacements and rotations.

At the free end, tractions are applied which reduce to an equivalent force P and
moment M with respect to the cross-section centroid. The force P and moment M can be
decomposed into flexure components, Px and Py, an extensional component, Pz, bending
moments, Mx and My, and a torsion moment, Mz. As a result of the applied tip loads, five
of the stresses are independent of Z and the sixth stress azz has flexure components which
vary linearly with z:

(3)

where I xx and I yy are the area moments of inertia about the x and y axes, respectively, and
a~z is associated with extension, bending and torsion. Introducing these assumptions into
the stress equilibrium equations and integrating yields the following displacement and strain
components [see Kosmatka (1986) and Kosmatka and Dong (1991) for further details]:

Px {Z2 V4 {2 2} } 1 { V4 } 2
U = - 2EI

yy
3(z-3L)- 2" yz(z-2L) + Vt X -V2Y (z-L) + 2EI

yy
My+ 2" Mz z

-Oyz- 2:;xx {{2V tX+V6y}y(Z-L)+ ~ yz(z-2L) }+t/JAX,y), (4a)

Py {Z2 Vs {2 2} } 1 { vs} 2D= --- -(z-3L)--xz(z-2L)+ VzY -VIX (z-L) --- M +-M z
2EIxx 3 2 2EIxx x 2 z

+Oxz- 2:;yy {{V6X+ 2V2Y}X(Z-L) + ~4 XZ(Z-2L)}+t/Jy(X,y), (4b)

+ E~xx {Mx+ ~ Mz}YZ- 2;L {{vsx+v4y}y(z-L)-yz(z-2L)}

-;A {~ Px+ ~4 py-Pz}z+t/Jz(X,y) (4c)
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PxV6 PyV6 oljJx oljJy
Yxy = - El x(z-L)- El y(z-L)+~+~,

yy xx uy uX

(4d)

(4e)

(4f)

(4g)

(4h)

(4i)

where A is the cross-section area, () is the twist rate of the beam about the centroidal axis
(z), that is a function of the three force components (Px> Py, Pz) and the three moment
components (Mx , My, M z), E (= I/S33) is commonly called Young's modulus, and Vj are
cross-coupling coefficients defined as:

Sj3

Vi = - S33 . (4j)

Here VI and V2' are the usual Poisson coefficients, and V4, Vs and V6, express the three
dimensional extension-shear coupling that can occur in a completely anisotropic body. The
remaining functions (ljJx, ljJy, ljJz) represent local cross-section x,y dependent deformations
and are unique for each cross-section shape and material configuration, and are linearly
proportional to the six applied loads. In the current development, the local cross-section
deformations are first calculated in terms of the six applied loads and the twist rate, then a
linear relation is developed that expresses the twist rate in terms of the six applied loads,
and finally this relation is used to express the local deformations, stresses, and displacements
in terms of only the six applied loads. Writing the local deformations in terms of the six
applied loads and the twist rate [see Kosmatka and Dong (1991)]

7

(ljJx,ljJy,ljJz) = L (ljJX(j),ljJy(i),ljJZ(i)Qj,
i= I

where Qj are the components of

(4k)

(41)

The "unit" local cross-section deformations (ljJX(j), ljJy(j), ljJz(i) are assumed to have the
form of a power series:
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00 00

t/Jx(i) = L L amn(i)x"'y",
m=O n=O

00 00

t/JY(i) = L L bmn(i)x"'y",
m=On=O

00 00

t/Jz(i) = L L Cmn(i)x"'y" ,
m=On=O

421

(5a-e)

where (amn(i), bmn(i), cmn(i)) are unknown coefficients that depend upon the cross-section shape,
material properties and load-type Qi' and the subscripts m and n correspond to the order
ofx and y, respectively. The four rigid body motions of the cross-section (three translations,
rotation about the z-axis) for each of the seven cases are constrained by setting
(aoo = boo = Coo = 0) and requiring that (aol = b 1o). Assuming that the series is finite, eqns
(4k) and (5a-e) are combined to form:

where

{t/J} = [H]['I']{Q}, (6a)

{t/J}T = {t/Jxot/Jy,t/Jz},

[

[N(X,y)] 0

[H] = 0 [N(x,y)]

o 0

o ]o ,
[N(x,y)]

(6b, c)

and ['1'] is comprised of seven columns of unknown coefficients that have the form :

(6d)

For example, ifa cubic polynomial was selected, then based upon Pascal's triangle, [N(x, y)]
has 10 terms:

(7a)

and {a(i)}, {b(i)} and {C(i)} for the ith column of ['1'] has the form :

(7b-d)

and the aforementioned three rigid body translations and one rigid body rotation are
constrained using standard finite procedures after the cross-section model is fully assembled.

The strain array {e} of eqn (Ie) can be obtained in terms of the matrix of unknown
coefficients ['1'], the applied forces and moments, and the centroidal twist rate by substituting
eqn (6a) into eqns (4d-i) :

where

{e} = {[B]['I'] + [Fcl}{Q} , (8a)
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o[N(x,y)]
0 0 0 0

o[N(x,y)]

OX oy

[B]T = 0
o[N(x,y)]

0 0 0
o[N(x,y)]

(8b)
oy OX

0 0 0
o[N(x,y)] o[N(x,y)]

0
oy aX

and [Fe] is defined in the Appendix.
The magnitude of the unknown coefficients in ['1'] can be determined by applying the

principle of minimum potential energy:

<5n = <5U-<5We = 0,

where <5 U is the variation of the strain energy;

<5U = iL1{&V[C]{e} dA dz,

(9a)

(9b)

and <5 We is the variation of the work ofexternal forces that results from the applied tractions
on the beam ends:

<5 We = 1{"t"xz<5t/Jx+"t"yz<5t/Jy +uzz<5t/Jz} I(Z~L) dA -1 {"t"xz<5t/Jx+"t"yz<5t/Jy +uzz<5t/Jz} I(z= 0) dA,

(9c)

which reduces to (Kosmatka and Dong, 1991):

(9d)

A set of linear algebraic equations for determining the seven "unit" unknown defor
mation coefficients is obtained by substituting (8a), (9b) and (9d) into (9a), integrating over
the beam volume, and taking the variation with respect to the unknown coefficients:

[K)['¥] = [[Fw] - [Fell, (lOa)

where

[K] = L1[B]T[C][B] dA, (lOb)

[ 0

0 0 0 0 0

n0 0 0 0 0 0
[Fw] = L

L1y[N(x, y)] dA

(lOc)

I:
y
1x[N(x,y)] dA 0 0 0 0

and

[Fel = L1[B]T[C][Fel dA, (lOd)

with [Fe] also being defined in the Appendix. The final form of the local cross-section
deformations [eqn (4k)] is determined by solving eqn (lOa) for ['I'] and substituting the
results into eqn (6a). Similarly, the stress components [eqn (ld)] can be written in terms of
{Q}, using eqns (la) and (8a), as

{U} = [a]{Q}, (lla)
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[-0'] = [C][[B]['¥] + [Fel].
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(lIb)

The centroidal twist rate (}(Q7) can now be determined in terms of the three applied
forces and moments by substituting the fourth (ryz ) and fifth ('l'xz) rows of eqn (Ita) into
the cross-section torsion moment equilibrium equation:

(I2a)

integrating, and rearranging to get:

(12b)

where

and

ak =1{X(0'4k)-Y(O'Sk)} dA, (k = 1, ... ,7).

(12c)

(I2d)

(12e)

The i andj subscripts Uij in eqn (12e) correspond to the row and column positions in [0']
[eqn (II b)]. The coefficients al-a6 are all independent of the beam-length because from the
original assumptions, the shear stress distribution is only a function of the cross-section
coordinates x and y. Moreover, the torsion stiffness is commonly defined as: GJ = l/a6
[see Kosmatka and Dong (1991)].

Lastly, the local deformations and the stress array can be expressed in terms of only
the three applied forces and moments by combining eqn (I2b) with eqns (6a), (8a) and
(Ita) :

where

and

E:} ~ [H]['I'][l1{Q'),

{e} = ([B]['I'] + [FelHT] {Q*},

{u} = [C][[B]['P] + [FclHT] {Q*},

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

[T] 0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

al a2 a3 a4 as a6

{Q*}T = {Px,Py,P"Mx,My,Mz}'

(l3a)

(I3b)

(l3c)

(I 3d)

(l3e)
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BEHAVIOR OF AN ANISOTROPIC BEAM

The general behavior ofa cantilever anisotropic beam having an arbitrary cross-section
can now be studied using the displacement (4a-e) and stress distributions (13b) along with
the calculated twist rate (12b) and the cross-section deformations (13a). In a previous paper
(Kosmatka and Dong, 1991), a detailed discussion was presented covering the extension,
bending, torsion and flexure behavior ofanisotropic cantilever prismatic beams based upon
Saint-Venant solutions. In the current paper, we will focus our discussions on two topics:
shear deformation and further issues concerning the shear center location.

Shear deformation
An examination of the transverse displacements (u, v), from eqns (4a, b), reveals that

applying either a bending moment (Mx, My) or a flexure force (Px, Py) will produce cen
troidal tip components (x = y = 0, z = L) that agree with the standard (isotropic) strength
of material solutions

P L 3 M L 2

u(x = Y = 0, Z = L) = 3il + 2~1 'yy yy

P L 3 M L 2

v(x = Y = 0, Z = L) = 3;1 - 2;1 '
xx xx

(14a, b)

and applying an extension force (Pz ) will produce only an axial component (w). But the
transverse components associated with shear deformation are not included in eqns (4a-e)
because the fixed root boundary was defined by setting the deformed centroidal axis slope
to zero (aujaz = avjaz = 0). These additional transverse components can be included by
simply rotating the deformed beam so that the slope of the deformed cross-section at the
centroid (x = y = 0) is coincident with the x-y plane, and thus the deformed centroidal
axis will have a nonzero slope at the origin. These rotation angles are equal to the shear
strains (Yxn Yyz) at the centroid of the beam root and can be found by evaluating the fourth
and fifth equations of eqn (13b) at (x = y = z = 0). For example the rotation angle, about
the y-axis, associated with shear deformation in the x-z plane is equal [from eqns (4h), (5c)
and (13a)] to:

al/J I 6Yxz(O) = Yxzlx=y=o = -az = I (CIO(i)+ai CIO(7»Q;*.
x x=y=o ;= I

(15)

Similarly the rotation angle, about the - x-axis, associated with shear deformation in the
y-z plane is equal to :

_ al/Jz I - ~ *Yyz(O) - ay x=y=o - i~1 (CO I(i) +aj CO\(7»Q; .

The final forms of the displacement components including shear deformation are

(16)

Px {Z2 V4 {2 2} } 1 { V4 } 2
U = - 2El

yy
T(z-3L)-"2 yz(z-2L) + VIX -V2Y (z-L) + 2El

yy
MY+"2 Mz z

-Oyz- 2;;xx {{2V1X+V6Y}Y(Z-L) + ~ yz(z-2L)} +Yxz(OlZ + l/JAx,y), (17a)

P
y

{Z2 Vs {2 2} } 1 { vs} 2V = - -- -(z-3L)- -xz(z-2L)+ V2Y -V\X (z-L) - -- Mx+ -Mz z
2Elxx 3 2 2Elxx 2

+Oxz- 2;;yy {{V6X+ 2V2Y}X(Z-L)+ ~4 xz(z-2L) }+YYZ(O)z+l/J,(x,y), (17b)
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(17c)

where 0, l/Jx, l/Jy, l/JZl Yxz(O) and yyz(O) are defined in eqns (12b), (13a), (15) and (16), respectively.

Shear center location. Line ofshear centers
For prismatic cantilever beams that exhibit less than generally anisotropic behavior

(V4' Vs =0), the shear center is a property of the cross-section and independent of beam
length (the line of shear centers is parallel to the centroidal axis). For this class ofmaterials,
a classic definition has been presented for locating the shear center (Griffith and Taylor,
1917) as "the load point that produces a zero mean value cross-section twist rate (i.e., zero
twist rate about the centroidal axis)." Attempting to extend this definition to a beam
composed of a generally anisotropic material (V4' Vs -# 0) leads to a shear center location
that is a function of the cross-section shape, material definition and is linearly dependent
upon beam-length (Kosmatka and Dong, 1991). Thus, the line of shear centers for a
generally anisotropic beam is straight, but it is not parallel to the centroidal axis.

We can study this phenomena by calculating the micromolar twist rate for a particle
in the beam:

+ 2;; {2vlx+v6y+vs(z-L)}, (18)
xx

where the z-dependent terms are associated with anisotropic "bend-twist" coupling as a
result of applied flexure. This z-dependency of the twist rate with applied flexure was
observed by Libove (1988) in his study of single-cell thin-walled anisotropic beams. The
micromolar twist rate about the centroidal axis (x = y = 0), to be consistent with the work
of (Griffith and Taylor, 1917), is:

(19)

Next, we apply a general tip flxural force (Pm Pys) through the unknown shear center
location (x" Ys), where the equivalent centroidal forces and moments are defined as

(20a-c)

Substituting eqns (20a-c) and (12) into eqn (19) results in

(21)

Since the micromolar twist rate (owz/oz) varies linearly with (z) for a generally anisotropic
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beam, it is not possible to locate the shear center so that the twist rate about the centroidal
axis is zero independent of beam axial position. Thus the Griffith and Taylor definition
cannot be implemented if (V4' Vs #- 0). Instead, we recognize that since the twist rate varies
linearly with z, then the micromolar twist (wz ) will vary quadratically with (z). Thus, the
best that can be achieved is to "locate the shear center (x" Ys) so that there is zero
micromolar twist at the beam root (z = 0) and zero twist in the cross-section plane that
contains the applied load (for a tip load, z = L)." This is accomplished by setting

rL owJo ozz dz = O. (22)

This is analogous to setting the average micromolar twist rate to zero over the beam
length, which was proposed by Libove (1988) for single-cell thin-wall anisotropic sections.
Substituting eqn (21) into eqn (22), carrying out the integration, and solving, produces the
shear center location for the beam tip cross-section (z = L) that is independent of the
magnitude of the applied loads:

1 { vsL}
xs(z = L) = XsL = - a6 a2- 4El

xx
'

(23a, b)

The shear center location at the root of a generally anisotropic beam (or a very short
anisotropic beam (L ~ 0)) is equal to the classic Griffith/Taylor definition for an isotropic
cross-section (xso = -a2/a6' Yso = al/a6)' The shear center location in the beam-tip cross
section [eqn (23a, b)] is composed of two terms; one which is independent of the beam
length (i.e. the classic Griffith/Taylor definition) and one which is linearly proportional to
the beam-length, the material properties (V4' vs), and the ratio of the torsion stiffness to the
bending stiffness [1/(a6Elxx), 1/(a6Elyy)].

An alternate shear center definition has been presented by Reissner (1989, 1991) using
thin-plate theory so that "the application of an applied flexture force will produce zero
twist about the calculated line of shear centers" and thus insure that the shear center is
coincident with the center of twist. Recently, Kosmatka (1992) applied Reissner's definition
to the Saint-Venant flexure and torsion problems of a general prismatic isotropic beam and
developed a linear relationship for calculating the Reissner shear center location (x:, yn
in terms of the classic Griffith-Taylor location (xso, Yso) :

xsox: = ---G-J-'

l+v EIxx

* YsoYs = ~'-----G-J-'

l+v
Elyy

(24a, b)

where (GJ = 1/a6)' It was shown for isotropic beams that the two locations are very close
if the cross-section is moderately thick, but if the cross-section is very thin (i.e. thin triangular
or airfoil section), so that (GJ/E!) is large, then the difference in the two locations can be
substantial with the Reissner shear center location being much closer to the centroid.

Now to apply the Reissner definition to a generally anisotropic beam with an arbitrary
cross-section, we again apply a general flexure force (Pm Pys) through an unknown shear
center location (X:L,Y:L) in the tip (z = L) cross-section, where the equivalent centroidal
forces and moments are given in eqns (20a-e) and the micromolar twist rate about the
unknown shear center location is determined by substituting eqns (20a-e) and (12b) into
eqn (18):
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a:z
= pxs(al -a6Y:L - 2;I

yy
{V6X:L +2V2Y:L +V4(Z-L)})

+Pys ( a2 +a6X:L + 2;I
xx

{2VIX:L +V6Y:L +VS(Z-L)}). (25)

Once again, the micromolar twist rate (aOJz/oz) varies linearly with (z), and thus the best
that can be attained for an anisotropic beam is to locate the shear center so that the
micromolar twist (OJz) is zero at the beam root (z = 0) and beam tip (load plane, z = L)
and varies quadratically between the root and tip. Substituting eqn (25) into eqn (22) and
carrying out the integration over the beam-length, results in two coupled linear algebraic
equations that are used to solve for the shear center location in the beam-tip cross-section:

[

VI

a6+ EI
xX

V6

2EIyy

(26)

An examination of the above equation reveals that: (l) this shear center location for
anisotropic beams will identically reduce to the Reissner definition of eqn (24) for isotropic
materials (v 4 , Vs, V6 = 0); (2) the form of the length-dependency effects is identical to that
ofeqn (23), which was developed by extending the Griffith-Taylor definition for anisotropy;
and (3) the presence of (v6) introduces coupling between the x and Y locations. The coupling
associated with (V6) is unique in that it is not present in the extension of the Griffith-Taylor
definition [eqn (23)] and furthermore, (V6) type material coupling cannot be included by
studying plate-type theories, which make use of plane stress assumptions. Finally, the shear
center location (x:o, Y:o) in the beam root cross-section is determined by solving eqn (26),
where (L) is set to zero. An example of the two different "line of shear centers" definitions
is presented in Fig. 2, where it is possible that the shear center in the tip cross-section plane
can be well outside of the cross-section planform.

COMPUTER PROGRAM

A computer program was written where, first, the boundary of a general cross-section
is defined using (n) coordinate points with (n) straight line segments connecting the points.
Second, the cross-section is discretized into (n) triangular subregions, where one edge of a
triangle is a boundary line segment and the other two edges connect the end-points of a
boundary line segment with the user-defined cross-section origin. Thus all of the subregions
have one corner that is defined at the origin. Third, the cross-section centroid and principal
axes are calculated and then the user-defined cross-section coordinates are transformed to

z

(x~.y~)

(xso·Yso)

x

,\, 
;\ -' ---- '\ "

'\ "
'\
'\
'\
'\

Fig. 2. Line of shear centers in an anisotropic beam.
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the cross-section principal axes. Next, the area integrals [eqns (1Ob-d)] for each triangle
subregion are evaluated using exact Gaussian Quadrature formulae (Dunavant, 1985),
where the cross-section power series polynomial can be user-defined. Fifth, the complete
cross-section stiffness and force matrices are formed by simply adding together (not finite
element type assembling) all of the triangular subregion matrices and the three rigid body
translations and rigid body rotation are constrained. Sixth, the coefficients for each of the
seven cases of {Q} are determined. Seventh, the calculated coefficients along with the power
series polynomial definition are used to determine the shear stress distribution, the flexibility
constants [a;(i = 1, ... ,7)], the cross-section properties (shear center location, torsion
constant, shear deformation, etc.) and transform the seven sets of calculated power series
coefficients to six sets associated with the six applied loads. Finally, the calculated values
are transformed from the principal axes back to the user defined coordinate system.

This approach strongly differs from our previous finite element based approach (Kos
matka and Dong, 1991) in that the global matrix size is defined by the assumed polynomial
order and not the complexity of the cross-section. Moreover, cross-section cavities can be
easily treated by simply subtracting off the triangular subregions that define the cavity. The
aspect ratio of a triangle subregion is not critical, since the power series is a global cross
section function and not a local subregion function (i.e. finite element method).

NUMERICAL RESULTS

Prismatic cantilever beams with three different cross-section types are studied to vali
date the current approach (ellipse), prove convergence (triangles) and illustrate interesting
beam behavior not found in the literature (triangle, NACA-0012 airfoil). See Fig. 3(a-c).
Two different materials are considered induding an isotropic material (AI 6061-T6, E =
69 GPa, v = 0.333) and a transversely isotropic material [unidirectional high strength
graphite/epoxy fibers (Table 1)] with G23 = En/(2(l +V23»' Generally orthotropic or an
isotropic beam behavior is introduced by orienting the material reference frame (l, 2, 3)
associated with the graphite/epoxy fibers relative to the beam coordinate frame (x,y, z)
using (IX) and (f3), where the angles are defined in Fig. 4 and the resulting transformation
between the two orthonormal coordinate systems is given as

~--~:

a.)

iG r
2a

b.)
N

[f
14 a

c.)

0.80.60.4
l~ o'~k::=:,:'::'=====3':'::==,:i,~,;;a-or,-+~-0.06~

o 0.2
Xlc

Fig. 3. (a) Elliptical; (b) triangular; and (c) NACA-OOI2 airfoil cross-sections.
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Table 1. Material properties for uni·
directional high-strength graphitel

epoxy fibers
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Ell

E 22 = E 33

G 12 = G 13

VI2 = V13
V 23

145 GPa
IOGPa

4.8 GPa
0.250
0.400

{

I} [Sin(IX)COs(P)
2 = COS(IX)COS(P)

3 -sin (P)

sin (IX) sin (P)

cos (IX) sin (P)

cos(P)

cos (IX) ] {X}
-Si~ (ex) ;. (27)

The resulting 21 distinct flexibility coefficients (Sij) are determined using standard techniques
[see Lekhnitskii (1963)]. Aligning the fiber axes with the beam coordinate axes with
(ex = P= 0) will result in transversely isotropic beam behavior with V4 = Vs = V6 = O. Rotat
ing the material axes about the y axis (set P= 0, and vary IX), will produce orthotropic
beam behavior with (vs #- 0) and V4 = V6 = O. Similarly, rotating the material axes about
the x axis (set P= 90°, and vary ex), will produce (V4 #- 0, Vs = V6 = 0). Finally, rotating the
material fibers in the cross-section x-y plane (set ex = 90°, and vary P) results in (V4 = Vs = 0,
V6 #- 0).

Elliptical cross-section
The current approach was initially verified by calculating the local cross-section defor

mations associated with applied flexure (Py ) for anisotropic cantilever beams with elliptical
cross-sections having three different aspect ratios (b/a = 0.1, 1.0, 10.0) [see Fig. 3(a») and
comparing with the exact local cross-section deformations which can be easily determined
by integrating the exact strain distributions given by Lekhnitskii (1963). Anisotropic
behavior was introduced by rotating the graphite/epoxy fibers in the x-z plane
(0° < ('l < 90°, P= 0°) so that Vh V2 and Vs are nonzero. Each elliptical cross-section was
discretized using 90 points along the perimeter (i.e. divide the cross-section into 90 triangular
subregions) and the local deformations of the cross-section (l/Ix, l/IY' l/Iz) were modeled using
cubic polynomials [eqn (7a-d)]. Thus the resulting matrix equation of eqn (lOa) had 26

y

3 2

fiber direction

z

Fig. 4. Orientation of material fibers (1,2,3) relative to Cartesian frame (x,y,z).



430 J. B. KOSMATKA

unknowns. The calculated power series coefficients were found to comprise only nine
nonzero values that have the form:

t/Jx = Py(aoly+a21x2y+ao3y3),

t/Jy = Pv(bIOX+bI2Xy2+b30X3),

t/Jz = Py(COlY+C21X2Y+C03y3),

where these nine coefficients are expressed from eqn (13) as:

(28a-<:)

(28d-f)

and the subscripts (2) and (7) are associated with the second and seventh column of ['P].
The remaining 17\coefficients were always identically equal to zero independent of aspect
ratio and orientation angle. In Figs 5-7, the variation of the nine nonzero local deformation
coefficients is presented as a function of orientation angle (IX) for the three aspect ratios,
where the exact solutions ofLekhnitskii (1963) are represented by solid lines and the current
approach is represented with circles. From these figures it is clear that the current approach
can reproduce the exact local deformation result over a broad range of aspect ratios and
orientation angles.

Triangular cross-section
A second set of homogeneous isotropic and anisotropic cantilever beams having

triangular cross-sections was analysed to first prove convergence of the cross-section
parameters with increasing power series polynomial order and second illustrate interesting
section property information not found in the literature. The triangle represents an inter
esting cross-section shape because even though it is geometrically simple (3 comer points,

2-r------------------,
1

eto~--+---,.,..--------7)

ur -1
j-2

-3

-4+-----------------+6
5

4 _II

3uf
2Ji
1

0.7~~;==_-__=A~:o:::-=...::::::::::c~to
0.6

II 0.5
-;: 0.4
wj> 0.3

0.2
0.1

0<r--........,r"""""'.......~"'T"'""~ ...............~"'T"'""..................'""T.........~
o 10 20 30 40 50 60 70 80 90

a (degrees)

Fig. 5. Nondimensionalized in-plane coefficients (ao .. a2 .. a03) as a function of orientation angle IX,

(P = 0) and cross-section aspect ratio b/a for an elliptical cross-section (- exact, 0 current
approach).
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-3
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0~::::::----------__:_::::::::::=g::::=="'9-1.5
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_II

{ -1
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Fig. 6. Nondimensionalized in-plane coefficients (b l 0, b 120 b30) as a function of orientation angle IX,

(P = 0) and cross-section aspect ratio b/a for an elliptical cross-section (-- exact, a current
approach).
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three triangular subregions), closed-form torsion and flexure solutions for the local cross
section deformations exist for only the isotropic equilateral triangle, whereas the local cross
section deformations for any other aspect ratio (bja) are represented by an infinite series
of transcendental functions. For these cross-sections, the current approach represents a
"best-fit" to the infinite series, where almost all of the calculated coefficients will be nonzero.
As the order of the power series polynomial is increased, the calculated coefficients may

80,---------------:]';:::-0

80?;~9'=~~~!=::S===O:'7~::..c:F=::::t:~i~ 40~
ur
eP 20

0+---~---_P_---------1

-20+----~....c~----------+4

2

Q=~=:o:::~--...3fill;;;:_-___:=::o:=6"0 -~ur
-2 Ji

-0?---6-4

2+-----::::""'D:------------+-8

0+---+---~,.__--------1

10 20 30 40 50 80 70 80 90
a (degrees)

Fig. 7. Nondimensionalized in-plane coefficients (CO" C21 ' C03) as a function of orientation angle IX,

(P = 0) and cross-section aspect ratio b/a for an elliptical cross-section (-- exact, a current
approach).
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vary slightly, but the calculated cross-section integrals (section properties) will experience
virtually no change. In this study, a ninth order power-series polynomial was used for each
of the three local deformation functions (161 total unknown coefficients) and the numerical
integration was performed exactly using a 52-point Gaussian Quadrature formula (Dunav
ant, 1985). A second coordinate system (.i,ji) is introduced in the triangle [Fig. 3(b)], where
the origin is located at the mid-length of the base band .i bisects the triangle.

To study convergence of the section properties with polynomial order, we initially
analyse an isotropic (AI 6061-T6) cantilever beam with a thin triangular cross-section
(L/a = 10, b/a = 0.1). In Table 2, the key section parameters are presented as a function
of polynomial order and matrix size ([K]). The normalized shear center locations, .isla and
.iNa, are presented in the (.i,ji) system, where the two values are significantly different for
this thin cross-section, but both approaches exhibit monotonic convergence. The torsion
constant (GJ = l/a6) is also presented, where again the solutions converge quickly. Lastly,
the ratios of the centroidal tip displacement associated with shear deformation to the total
centroidal tip displacement for applied flexure loads (Px ) and (Pv) are presented, where the
magnitudes of the ratios are given, from eqns (17a-e), as:

Ushear

Utata!

Vshear

Vtatal
(29a, b)

As expected, shear deformation is a much larger effect for flexure loads applied in the
x-direction because the effective beam-length aspect ratio is much shorter in the x-z plane
(L/a = 10) compared to the y-z plane (L/b = 100). Both values exhibit monotonic con
vergence, where it is interesting to note that the x-direction value converges quickly using
a low polynomial order (3). A second convergence study was performed using the same
geometric beam dimensions, but generally anisotropic behavior was introduced by orien
tating unidirectional high-stength graphite/epoxy fibers with ex = f3 = 30°. The calculated
section properties are presented as a function of polynomial order in Table 3. The beam
root and tip shear center locations are presented using both approaches, where it is observed
that: (1) the location converges monotonically with increasing polynomial order; (2) the
root shear center locations are within the cross-section; (3) the tip shear center locations
are well outside of the cross-section; and (4) the result obtained by extending Reissner's
approach is closer to the centroid (.isla = 0.333), more conservative, than the result obtained
by extending the Griffith-Taylor approach. The torsion constant (GJ) and the ratios of the
centroidal tip displacement associated with shear deformation to the total centroidal tip
displacement for applied flexure loads (Px ) and (Py ) are also presented, where again these
parameters converge monotonically.

In addition to the convergence study, three studies are presented that investigate the
variation of the shear center location with cross-section aspect ratio and material properties.
In Fig. 8, the sensitivity of the shear center location with aspect ratio (b/a) and Poisson's
ratio (v) is presented for an isotropic cantilever beam. The bold solid line and the thin solid
lines represent the shear center locations based upon extending Reissner's and Griffith-

Table 2. Calculated section properties of an isotropic cantilever beam with a thin triangular cross-section as a
function of power series order (b/a = 0.1, L/a = 10, v = 0.333)

Polynomial Matrix
order size ija i~/a GJ (10- 3

) U'h... /Utotal (10- 3) V'h,ac!Vto1al (10-' ')

2 14 0.2718 0.2923 2.168 4.640 -24.26
3 26 0.1398 0.2035 2.118 5.815 4.594
4 41 0.1441 0.2053 2.060 5.815 5.049
5 59 0.1481 0.2070 2.007 5.815 4.583
6 80 0.1515 0.2082 1.969 5.815 4.671
7 104 0.1530 0.2089 1.943 5.815 4.690
8 131 0.1536 0.2093 1.938 5.815 4.700
9 161 0.1536 0.2093 1.936 5.815 4.701



Table 3. Calculated section properties of a generally anisotropic cantilever beam with a thin triangular cross-section as a function of power series order (b/a = 0.1, L/a = 10, Q( = P= 30°)
;I>

Polynomial ::l
III

order xso/a j,o/b (10- 2) xsLia j,L/b x:o/a j:o/b (10- 2) x:L/a j:db GJ (10- 4
) U'hea,/Utotal (10- 3) V'hea,/Vtotal (10- ') .:<

f!J.
'"

2.600 -2.246 5.332 5.642 -26.00
0

2 0.2724 -0.1881 3.627 0.1434 0.2914 4.231 ...,
III

3 0.1481 -2.089 3.419 0.1208 0.2049 11.12 2.473 -2.079 5.199 5.468 5.082 2.
4 0.1566 -1.991 3.340 0.1179 0.2099 10.36 2.435 -1.985 5.059 5.461 3.036 '"0
5 0.1632 -1.916 3.279 0.1158 0.2137 9.803 2.406 -1.914 4.953 5.469 4.193

::j
0

6 0.1666 -1.877 3.248 0.1146 0.2159 9.512 2.390 -1.877 4.897 5.475 5.310 '0
ri"

7 0.1681 -1.862 3.235 0.1142 0.2166 9.401 2.384 -1.863 4.875 5.475 5.260 g"
8 0.1685 -1.856 3.231 0.1140 0.2169 9.353 2.382 -1.858 4.868 5.474 5.220 8
9 0.1686 -1.855 3.230 0.1140 0.2170 9.348 2.381 -1.856 4.864 5.474 5.214 '"

~...,...,
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Fig. 8. Variation of the shear center location in an isotropic triangular cross-section as a function
of bja and v, (- Griffith-Taylor approach, - adaption of Reissner approach, 0 Reissner

prediction) .

Taylor's approaches, respectively, where the shear center location based upon Griffith
Taylor's approach is clearly dependent upon (v) for thin sections, whereas the extended
Reissner-based prediction is independent of (v). The circular symbol represents the closed
form thin-plate prediction of Reissner (1989) for triangular isotropic cross-sections. These
results illustrate: (I) for very low aspect ratio triangles the difference in the two approaches
for locating the shear center can be profound; (2) the thin plate solutions of Reissner (1989)
are valid for only a very small aspect ratio range (b/a < 0.04); (3) both shear center
predictions converge as the aspect ratio approaches that of an equilateral triangle
(b/a = 1.155), then (xs = x: = 0); and (4) for large aspect ratios, both shear center pre
dictions are nearly coincident and they converge to the cross-section mid-length (a/2). This
occurs because for triangular cross-sections with large aspect ratios, the out-of-plane flexural
warping function approaches that of a thin rectangle cross-section.

In a second study, the shear center location was determined for a slender cantilever
beam (L/a = 10) with a thin triangular cross-section (b/a = 0.01) composed of off-axis
unidirectional high-strength graphite/epoxy fibers ( -90° < IX < 90°, {3 = 0°). In Fig. 9, both
shear center locations are presented for the beam root and beam tip as a function of
orientation angle (IX). At the beam root, the extended Reissner based approach is independent
of (IX) whereas the extended Griffith-Taylor approach is highly dependent upon (IX). This
is expected, based upon the above results for an isotropic triangular section which showed
that the Griffith-Taylor solution is sensitive to material cross-coupling effects for thin
sections. At the beam tip, both approaches for locating the shear center produce identical
results when the orientation angle is either close to 0° (- 10° < IX < 10°) or close to 90°
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9060-30 0 30
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+-----------------+-60.25
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0.1
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0
-90 -60

Fig. 9. Variation of the shear center locations at the beam root and beam tip of a thin composite
triangular cross-section (bja) as a function of orientation angle iX, (fJ = 0°).



Analysis of anisotropic beams 435

(- 70° > IX > -110°, 70° < IX < 110°). Outside of this range, the two approaches produce
tip shear center locations that can lie well outside of the cross-section shape, where the
extended Reissner approach is much more conservative.

In a third investigation, the sensitivity of the shear center location with varying (V6)
was determined by studying a slender cantilever beam (L/a = 10) with a triangular cross
section (b/a = 0.1) composed of off-axis unidirectional high-strength graphite/epoxy fibers
(IX = 0°, -90° < fJ < 90°). Since (V4 = Vs = 0) the shear center location is a cross-section
property that is independent of beam-length. In Fig. 10, both shear center locations are
presented as a function of orientation angle (fJ). In the x-direction, the Griffith-Taylor
based prediction is farther from the centroid and more sensitive to (fJ) than the extended
Reissner approach, whereas in the y-direction, the extended Reissner approach is clearly
dependent upon (fJ) and the Griffith-Taylor based prediction is virtually zero.

NACA-0012 cross-section
A final study was performed to investigate the variation of the shear center location

with material orientation angle (IX) in typical composite general aviation aircraft wings
and helicopter blades. These structures are approximated as homogeneous cantilever beams
having a NACA-0012 airfoil cross-section [Fig. 3(c)], where a second coordinate system
(i,.0 is introduced with the origin at the leading edge. Two beam-lengths were considered;
(L/c = 3) for typical general aviation aircraft wings and (L/c = 20) for long slender heli
copter blades, where c is the cross-section chord. The airfoil cross-section is discretized
using 95 points on the boundary (Le. 95 triangular subregions), based upon the math
ematical definition of (Abbott and Von Doenhoff, 1959), and the section centroid is located
at (0.42067c). Each of the three local deformation functions are modeled using a 9th order
power-series polynomial (161 total unknown coefficients) and the numerical integration
was performed exactly using a 52-point Gaussian Quadrature formula (Dunavant, 1985).

In Fig. 11, both shear center locations are presented for the beam root and beam tip
(L/c = 3,20) as a function of orientation angle (IX). At the beam root the results are similar
to the above triangular cross-section study (Fig. 9), where the extended Reissner-based
approach is nearly independent of IX, whereas the extended Griffith-Taylor approach is
slightly more dependent upon IX. At the aircraft wing tip (Fig. 11, center region), it is
observed that: (1) the two shear center definitions are in near perfect agreement when
( - 5° < IX < 10°) and (60° < IX < 110°); (2) the extended Reissner definition of the shear
center can be ahead (i < 0) and outside of the airfoil section if ( - 8° < IX < 52°) or behind

r----:::=.......::--------------,0.4

-0.2

0.2

9060-30 0 30
p(degrees)

-+-----------"""'"=----+-0.40.25

0.2

0.15

0.1
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0
·90 -60

f----------l,..__-£------7!-0

Fig. 10. Variation of the shear center locations at the beam root and beam tip of a thin composite
triangular cross-section (b/a) as a function of orientation angle p, (0( = 90°). .
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Fig. II. Variation of the shear center locations at the beam root and beam tip ofa composite aircraft
(Lie = 3) and a composite helicopter blade (Lie = 20) as a function of orientation angle (l, (f3 = 0°).

(x> c) and outside the airfoil section if (15° < IX < 42°), whereas the extended Griffith
Taylor definition of the shear center can be ahead (x < 0) or behind (x> c) the airfoil
section if ( - 8° < IX < -60°) or (12° < IX < 55°), respectively; and (3) the maximum dis
tance that the shear center can be located wither ahead or behind the wing-tip section occurs
for the extended Reissner definition at (IX = -30°, X:L = -0.5c) and (IX = 30°, X:L = 1.2c),
respectively, whereas the extended Griffith-Taylor definition has (IX = 38°, XsL = -l.lc)
and (IX = 36°, XsL = 1.7c), respectively.

For the tip section of the helicopter blade (Fig. II, upper region), the shape of the
curves represent an amplified version of the wing section. Thus, the shear center location
is well outside of the tip cross-section for most values of (IX), where the maximum distance
that the shear center can be located either ahead or behind the wing-tip section occurs
for the extended Reissner definition at (IX = 30°, X:L = -5c) and (IX = 30°, .i.~L = 6.5c),
respectively, whereas the extended Griffith-Taylor definition has (IX = 38°, X.,L = -9c) and
(IX = 36°, XsL = 9c), respectively.

CONCLUSIONS

The behavior of a tip-loaded anisotropic cantilever beam with an arbitrary cross
section is studied using Saint-Venant's semi-inverse method along with a power series
solution for the local in-plane and out-of-plane deformation warping functions. The power
series coefficients are determined by solving a set of variationally derived linear algebraic
equations. Using the resulting three-dimensional displacement solutions, the shear defor
mation asssociated with applied tip loads is investigated as well as the shear center location.
Two different definitions of the shear center are presented for anisotropic beams by extending
the classic approaches of Griffith-Taylor and that of Reissner. Both of the extended
definitions reveal the linear dependency of the shear center location with beam-length,
where the extended-Reissner prediction is much closer to the centroid then the extended
Griffith-Taylor prediction. Numerical results are presented for three different cross-sections
and two different materials. For elliptical cross-sections, it was shown that the calculated
power series coefficients were in exact agreement with existing elasticity solutions for
anisotropic beams over a wide variety of cross-section aspect ratios. For the triangular
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cross-sections, it was shown that the calculated power series coefficients represent a "best
fit" to the infinite series of transcendental functions and the warping-related section prop
erties (shear center, torsion constant, shear deformation) converge quickly with increasing
power series order. Moreover, three studies were performed to illustrate the sensitivity of
the shear center location with cross-section aspect ratio, material definition, fiber orien
tation, and beam-length. A final investigation was performed to study the length-depen
dency of the shear center in composite general avaiation aircraft wings (Lie = 3) and
helicopter blades (Lie = 20). At the beam root, the extended Reissner approach is nearly
independent of material orientation angle, whereas the extended Griffith-Taylor approach
is dependent. At the aircraft wing tip, it is observed that the two shear center definitions
are in near perfect agreement over a small range of orientation angles and the shear center
can be located either ahead or behind the wing-tip section. For the helicopter blade tip
section, the shear center location is well outside of the tip cross-section for most values of
orientation angle.
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APPENDIX

The matrix [Fel is defined as:

V, V,
0 0 0 0 0--x(z-L) --y(z-L)

El"" EIx.,

V2 V2 0 0 0 0 0--x(z-L) --y(z-L)
EI... Elxx

I Vs I V, I I I Vs v,
- 2EI {v sx+v,y-2(z-L)}x- 2EA - 2EI

xx
{v sx+v,y-2(z-L)}y- 2EA EA

-y --x --y---x 0
EIxx EI... 2EIxx 2EI...

[Fel = I
yy (AI) ~

I {v6
} I { 2 2 }

1:1:I
- EI... 2X+V2Y+V,(z-L) x 2EI (v,x -v2y )-2v,y(z-L) 0 0 0 0 x

xx ~

~

I { 2 2 I {v6
}

3:
- 2EI (v.x -v2y )+2vsx(z-L)} - EI

xx
v,x+ 2 y+vs(z-L) y 0 0 0 0 -y >

o-i
;l";yJ' >

V6 V6 0 0 0--x(z-L) --y(z-L) 0 0
EI.... Elxx



Integrating the matrix (AI) over the beam length results in

r[Fd dz = L[Fd. (A2)

where

r
v.L v.L

0 0 0 0 0--x --y
2Elyy 2EI.<x >

V2 L
l:l

V2 L
0 0 0 0 0 ~--x --y

2Elyy 2Elxx
l!l.
'"

I v, I v. I
0

1 I v, v. .....
- 2EI {v,x+v.y+L}x- 2EA. - 2EI {v,x+v.y+L}y- 2EA.

EI../
--x --y---x 0 '"[~] = I l:l

y.v xx EA. Elyy 2Elxx 2Elyy (A3)
~I 1 { 2 2 }- 2El {V6x + 2v2y-v.L}x 0 0 0 0 02EI (VIX -v2Y )+v.Ly x
~.yy xx

__1_ {(VIX2-V2Y2)- v,Lx} 1 g"
- 2EI {2V IX+V6y-v,L}y 0 0 0 0 -y e2Elvy xx '"

v6L v6L
0 0 0 0 0--x --y

2Elyv 2Elxx

~w
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